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Problem Model

Results

Conclusion

Estimating causal effects for survival data in settings with many more 
predictors than observations  is challenging. 


We require a method to predict the survival times:





given  (treatment) and  (covariates) that captures nonlinear 
relationships and interaction effects. Additionally, the method should adapt 
to different levels of sparsity while retaining all variables in the model.


 

(p > n)

𝔼[T | A = a, X = x],
A X ∈ ℝp

We performed a simulation study with the following settings:


• Sample size of  observations


• Censoring rate is ca.  30%


• Noise level is ca. 20%


• Covariates  are drawn independently from 


We consider two data-generating processes:


1. Linear model with 10% of nonzero coefficients:





2. Nonlinear model with interactions terms (Friedman function):





n = 100

X ∈ ℝp U[0,1]

log(T ) = β⊤X + ϵ .

log(T ) = 10 sin(πx1x2) + 20(x3 − 1/2)2 + 10x4 + 5x5 + ϵ .

Methods are compared using the root mean square error (RMSE), evaluated 
on a held-out set of size 1000.
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The survival time is modelled using an accelerated failure time (AFT) model:





with a sum-of-trees regression function and  


Each tree recursively partitions the covariate space, assigning a parameter 
value to each region. A two-dimensional example of a single tree:

log(T ) =
m

∑
j=1

f(X, a; θj) + ϵ,

ϵ ∼ 𝒩(0, σ2) .

Our method effectively captures nonlinearity, interactions, and adapts to sparsity, outperforming alternatives 
in high-dimensional survival prediction while retaining all variables for causal effect estimation.
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For each tree, we model the step heights  using a horseshoe prior, which 
provides adaptive shrinkage. This prior is placed on the distribution of  as 
follows:





where  denotes the half-Cauchy distribution.

h
h

hj ∣ λ2
j , τ2, σ2 ∼ 𝒩(0, λ2

j τ2σ2),
λ2

j ∼ C+(0, 1),
τ2 ∼ C+(0, 1),

C+

This allows for global shrinkage 
via  and for local signals to be 
picked up via the ’s. 


We use a non-informative 
inverse gamma prior for  while 
the trees follow a BART prior. 
Posterior samples are drawn 
using an efficient reversible jump 
Markov chain Monte Carlo (RJ-
MCMC) algorithm.
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